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Abstract. Ask4Summary creates summary for students’ questions based on text-

based learning materials. This study conducts a preliminary assessment on 

Ask4Summary’s performance in terms of generating summaries with different 

subsets of course materials (e.g., supplement academic papers in PDF only, notes 

and slides in Word and PowerPoint only, and everything the teacher provides for 

the students) read and processed by two reading methods: the built-in algorithm 

based on Python NLTK and AWS Comprehend Keyphrase Extraction and Syn-

tax Analysis. The course materials of a graduate level Academic Writing in Eng-

lish course in an Asian university and twenty-six common questions that students 

may ask in the class are provided by the course instructor. Each of the questions 

are read via the two methods and Ask4Summary generates the summaries with 

the six different datasets created by: (1) Python NLTK reading the academic pa-

pers in PDF only; (2) Python NLTK reading notes and slides in Word and Pow-

erPoint format only; (3) Python NLTK reading every course materials; (4) AWS 

Comprehend reading academic papers in PDF only; (5) AWS Comprehend read-

ing notes and slides in Word and PowerPoint format only; and (6) AWS Com-

prehend reading every course materials. For the 312 queries (i.e., ask 26 ques-

tions in 6 datasets with 2 methods analyzing the questions) made, 117 queries 

successfully generated the summary, where only 2 of them were read by AWS 

Comprehend. Among the rest of 115 summaries, 67 of them are from the datasets 

created via the built-in algorithm and 48 are from the datasets created by AWS 

Comprehend.  

Keywords: Language Learning, NLTK, AWS, Natural Language Processing, 

Learning Materials 

1 Introduction 

Information overload is caused by the highly increased education resources and makes 

users in the online learning environment spend huge time in searching for the suitable 
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education resources [6]. Helping students retrieve important information from the edu-

cation resources becomes an important research area in the educational technology do-

main, such as multi-document, user-specific, and innovative text summarization appli-

cations [2]. The research team has developed the Ask4Summary [4][5] to automatically 

responds students’ questions by generating summaries from the course content to help 

students quickly retrieve the important information, especially when online learning is 

getting more popular after the pandemic. 

To enhance the service, we would like to know which Natural Language Processing 

(NLP) toolkit and types of course content can generate the summaries successfully. 

Therefore, the research team worked with the teacher in the Academic Writing in Eng-

lish course in an Asian university to evaluate the system. Section 2 briefly introduces 

the NLP toolkits used in the service and the system workflow of Ask4Summary. The 

evaluation method is sketched in Section 3. Section 4 explains the analysis results based 

on the collected data. A brief summary and the future works are concluded in Section 

5. 

2 Ask4Summary 

The research team created an Ask4Summary website1 for a graduate level Academic 

Writing in English course in an Asian university to evaluate the performance of sum-

mary generation. Ask4Summary first reads and processes (see Stage i in Fig. 1) the 

text-based materials that the instructor used in the course. The materials include sup-

plement academic papers in PDF and notes and slides in Word and PowerPoint.  

 

Fig. 1. The system workflow of Ask4Summary. 

 
1 (removed for blind review)  
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Ask4Summary identifies the valid N-grams according to their Part-of-Speech (PoS) 

tags [3]. The research team selects two widely used NLP toolkit/service to support the 

built-in algorithm, which are Python NLTK [1] and AWS Comprehend Keyphrase Ex-

traction and Syntax Analysis2 (see Stage ii in Fig. 1). With the NLTK and AWS Com-

prehend’s help, Ask4Summary stores the extracted N-grams in the Ask4Summary 

Learning Table with the original content (see Stage iii in Fig. 1). The toolkit used in the 

feature extraction is also recorded in the Ask4Summary Learning Table so teachers or 

students are able to select which dataset generated by different toolkits they would like 

to use to generate the summary. 

After the text-based learning materials are read and processed, teachers and students 

can use Ask4Summary (see Stage 1 in Fig. 1) on the website. They can enter their 

course related question as Fig. 2 shows. The users can choose which “brain” they want 

Ask4Summary to use for generating summaries. The “brains” are different Ask4Sum-

mary Learning Tables created earlier with either NLTK or AWS Comprehend method 

reading different subsets of learning materials: the academic paper in PDF format only, 

notes and slides in Word and PowerPoint format only, and all course materials. 

 

Fig. 2. Users can ask questions related to the Academic Writing in English course on the 

Ask4Summary website. 

There is another table – Ask4Summary Response Table – used to store the questions 

users asked before as well as the questions’ N-grams & PoS tags and the generated 

summaries. After a question’s valid N-grams have been extracted (see Stage 2 in Fig. 

1), Ask4Summary first checks whether or not similar question in Ask4Summary Re-

sponse Table has been asked before (see Stage 3 in Fig. 1). If similar question exists, 

Ask4Summary simply retrieves the past generated summaries and delivers to the users 

(see Stage 4 in Fig. 1). On the other hand, it uses Cosine Similarity to find the top Y 

sentences in the top X documents, where X and Y are pre-defined and can be adjusted, 

are related to the question for generating the summaries (see Stage 3a in Fig. 1).  

 
2 https://aws.amazon.com/comprehend/features/  

https://aws.amazon.com/comprehend/features/
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The generated summary will be saved in the Ask4Summary Response Table (see 

Stage 3b) and dispatches the summary to the user (see Stage 4). Fig. 3 shows the sum-

mary generated by the system with the reading method Python NLTK regarding the 

question “What should I avoid while writing in English.” The Ask4Summary first uses 

Python NLTK to analyze the question entered. According to the selection of the “brain” 

types in Fig. 2 – that is, using Python NLTK to read all course material and storing the 

data into the Ask4Summary Learning Table, the generated summary is: “1) Avoid in-

formal verbs. 2) Avoid colloquial expressions. Avoid informal or colloquial expres-

sions such as a lot of in your written assignments. 3) Avoid clichés. Avoid using the 

expressions below in your written work.” Users can give feedback regarding their per-

ceived relevance (scaled from 0 to 10) and perceived satisfaction (scaled from 0 to 10) 

toward the generated summary.  

 

Fig. 3. The summary of the question generated by the Ask4Summary website. 

3 Evaluation Design 

The Academic Writing in English course is used for assessing the success rate of gen-

erating summaries for the course related questions. The course has 45 documents fed 

into Ask4Summary, include academic papers in PDF and the notes and slides in Word 

and PowerPoint described in Section 2. The course instructor also provides 26 common 

questions that students in the class usually ask, such as “what are the differences be-

tween academic and non-academic genres,” “what is plagiarism,” and “what are the 

common stages of the conclusion.” 

In the evaluation, Ask4Summary generates the summary from six “brains” pre-cre-

ated by using: (1) Python NLTK reading the academic papers in PDF format only; (2) 

Python NLTK reading notes and slides in Word and PowerPoint format only; (3) Py-

thon NLTK reading every course materials; (4) AWS Comprehend reading academic 

papers in PDF only; (5) AWS Comprehend reading notes and slides in Word and Pow-

erPoint format only; and (6) AWS Comprehend reading every course materials. The 

summary generation results are saved as the format shown in Table 1. 
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Table 1. The generated summary records for queries (partial). 

id question read_tool content_tool source success summary 

2 What is genre NLTK NLTK paper yes Biber (2006), for example, 

shows us that … 

25 What are the differences 

between academic and 

non-academic genres 

AWS NLTK all no  

42 What is nominalization NLTK AWS docu-

ment 

yes Nominalization refers to … 

… …  … … …  

 

Each query has its own id generated by the service and the questions are saved in the 

question field. The method used in reading question is saved in the read_tool column 

and the method used in reading and processing the course materials is saved in the 

content_tool column – the reading method could be NLTK (Python NLTK) or AWS 

(AWS Comprehend). Moreover, the course material subset used for generating sum-

maries is recorded in the source column, which annotates paper (academic papers in 

PDF format only), document (notes and slides in Word and PowerPoint format only ), 

or all (all the course materials). The column, success, indicates whether or not 

Ask4Summary generated the summary successfully and the generated summaries will 

be kept in the summary field. 

4 Preliminary Assessment Results 

First, the success rate in generating summaries is only 37.50% (117 of 312 queries); 

only 2 of the success queries were using AWS Comprehend as reading method for pro-

cessing the questions. A successful query in this preliminary assessment means that 

Ask4Summary can generate summary for the asked question without considering how 

relevance and/or how satisfaction the generated summary could bring to the user who 

asked the question.  

The research applied Chi-square test on the dataset with SPSS 28.0 showing that 

using Python NLTK to read questions has significantly higher successful rate (73.72%, 

115 of 156) in terms of generating summaries than using AWS Comprehend (1.28%, 2 

of 156) where χ2(1, n = 312) = 174.619, p < .001. Among the 117 success queries, 67 

summaries were generated from the datasets that were built by using Python NLTK to 

read course materials and 50 of them were built by using AWS Comprehend. 

Because the success queries that use AWS Comprehend to read questions are too 

few (i.e., only two), the preliminary assessment then focuses on the 156 queries that 

use Python NLTK to read the 26 questions and would like to see if there is a significant 

difference in terms of successfully generating summaries with different datasets built 

by using Python NLTK and AWS Comprehend reading methods, based on subsets of 

materials. The Chi-square test result is χ2(1, n = 156) = 11.944, p < .001. According to 

the data in Table 2, the datasets – despite of which subset of materials were using – 

built by Python NLTK performs better than AWS Comprehend. 
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Table 2. The Chi-square test for the success rate in data sets using different NLP toolkits in the 

built-in algorithm when reading questions using Python NLTK 

 No Yes Total 

NLTK 11 (14.10%) 67 (85.90%) 78 
AWS 30 (38.46%) 48 (61.54%) 78 

Total 41 115 156 

 

To figure out which subset of materials is better for Ask4Summary to generate sum-

maries for the 26 common questions that students would ask in the course, despite of 

the methods used to read subsets of materials the Chi-square test is applied in the que-

ries that only use Python NLTK reading questions. The Chi-square test reveals signifi-

cant differences – χ2(2, n = 156) = 6.419, p = .040 – on generating summaries with the 

datasets built by using different subsets of course materials, paper (academic papers), 

document (notes and slides), and all (all the course materials). The result only shows 

that there is a significant difference among the subsets but not telling us which subset 

is significant having better performance than the others.  

The Bonferroni correction is applied on the original Chi-square test and the results 

are listed in Table 3. Both paper and document categories are annotated with a subscript 

– a, indicating that there is no significant difference on having success summary gen-

eration rates between paper and document as material source. Similarly, there is no 

significant difference between using documents only and using all materials as the 

source when Bonferroni correction annotates a subscript – b – on both document and 

all categories. However, the category paper and all have different subscript annota-

tions, suggesting that there is a significant difference between the use of academic pa-

pers only and the use of all materials; the results show that the use of all materials has 

better performance with 82.69% success rate than only using academic papers (61.54%) 

while generating summaries.  

Table 3. The Bonferroni correction applied in Chi-square test when comparing the success rate 

of generating summaries with different subsets of materials. 

  Paper Document All Total 

No Count 20a 12a, b 9b 41 
 % within generation 38.46% 23.08% 17.31% 26.28% 

Yes Count 32a 40a, b 43b 115 

 % within generation 61.54% 76.92% 82.69% 73.72% 
Total Count 52 52 52 156 

 % within generation 100.0% 100.0% 100.0% 100.0% 

 

We would further like to investigate the influence that subsets might have impact on 

the success rate of summary generation when considering reading methods separately. 

While still only considering the use of Python NLTK to read question, the Chi-square 

test shows that there is no significant difference on the success rate of generating sum-

mary among those subsets all read by using Python NLTK earlier with χ2(2, n = 78) = 

2.752, p = .253. Similarly, the Chi-square test also shows that there is no significant 

difference among the subsets read by using AWS Comprehend with  χ2(2, n = 78) = 

4.225, p = .0.121. Table 4 lists the Bonferroni correction . All the three subsets are 
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annotated with a subscript – a, indicating that there is no significant difference among 

the subset after applied the Bonferroni correction on the Chi-square test.  

Table 4. The Bonferroni correction applied to Chi-square tests when comparing the success 

rate of generating summaries with different subsets read by different reading methods. 

   Paper Document All Total 

NLTK No Count 6a 3a 2a 11 
  % within generation 23.08% 11.54% 7.69% 14.10% 

 Yes Count 20a 23a 24a 67 

  % within generation 76.92% 88.46% 92.31% 85.90% 
 Total Count 26 26 26 78 

  % within generation 100.0% 100.0% 100.0% 100.0% 

AWS No Count 14a 9a 7a 30 

  % within generation 53.85% 34.62% 26.92% 38.46% 
 Yes Count 12a 17a 19a 48 

  % within generation 46.15% 63.38% 73.08% 61.54% 

 Total Count 26 26 26 78 
  % within generation 100.0% 100.0% 100.0% 100.0% 

 

5 Discussion and Future Works 

According to the analysis results of the preliminary assessment, using AWS Com-

prehend to read questions has a very low success rate (1.28%) in generating summaries. 

It is because the questions are usually short and AWS Comprehend cannot properly 

extract and identify key phrases from short sentences. When only considers the use of 

Python NLTK to read questions, the overall success rate of generating summaries for 

the 26 course related questions is increasing to 73.72% (115 of 156) from 37.50%. The 

datasets built by using reading method Python NLTK also have better performance 

(85.90% success rate for generating summaries) compared to AWS Comprehend’s 

61.54% – despite of which material subset was used. This higher summary generation 

rate might be caused due to the use of same method for reading the questions and course 

materials. 

The assessment also shows that Ask4Summary has higher success rate in generating 

summaries from the subset pre-built with more course materials: it has a significantly 

higher success rate (82.69%) from the subset built with both academic papers and teach-

ing materials than from the subset built with only academic papers (61.54%). However, 

when we consider the method used for reading the subsets of course materials sepa-

rately, we find that  there is no significant difference in terms of the success rate be-

tween the use of academic paper only and the use of everything. The Chi-square tests 

and Bonferroni correction results (see Table 4) on one hand show the course instructor 

that no material is more than the others and all materials included in her course are 

equally important for her students and lectures. On the other hand, the results also show 

more materials read by Ask4Summary no matter which reading method it uses, better 

chance it can generate summaries for student questions. 

The follow-up works the research team right now works on is to ask the course in-

structor to evaluate the summaries generated by both Ask4Summary and ChatGPT in 
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terms of the perceived relevance and satisfaction toward a question-summary pair ser-

vice. Through the follow-up works we can figure out (1) either Python NLTK or AWS 

Comprehend is more suitable for Ask4Summary’s summary generation algorithm, (2) 

which subset of course materials can help Ask4Summary to generate more relevant and 

better summaries, and (3) the course instructor’s perceptions toward Ask4Summary and 

ChatGPT and how different the perceptions would be. We can also analyze those sum-

maries that receive lower perceived relevance and satisfaction from the teacher to un-

derstand how to improve the Ask4Summary algorithm. 
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